Thursday, October 20, 2016

By the Numbers: Mobile LiDAR Processing

  • 18: Number different software packages we use to collect and process Mobile LiDAR data.
  • 1,000: Number of concurrent users that can access our LiDAR web-portal running Orbit Publisher.  Michael Baker’s state-of-the-art portal enables clients to interact with their LiDAR, imagery, and planimetric data without the need of expanding their own enterprise architecture.
  • 3: Number of primary LiDAR/LCMS processing centers in the U.S.: Hamilton, NJ; Pittsburgh, PA; and Jackson, MS.
  • 90+:  Number of domestic Michael Baker International offices our fleet of Mobile LiDAR systems supports.
  • 10:  Number of computers one LiDAR Technician can simultaneously operate to process data.
  • 5:  Number of Terabytes that can be transferred to our LiDAR Centers each day.
  • 100+:  Number of external hard drives in rotation between our fleet of 4 Mobile LiDAR systems and various processing centers.
  • 50-200:  Local capacity in available Terabytes at each of our LiDAR processing centers.  The local storage is only used for short-term needs.  Enterprise data storage processing is handled by our own private cloud (see Belly of the BEAST) which can handle up to 1 Petabyte of data.

Friday, October 14, 2016

Cultivating Excellence: Mobile LiDAR Operator Training

Base station setup, now admiring the view.
My time here at Michael Baker International has been busy to say the least. To some that would be a problem or cause for concern while working at their first professional job. For Michael Baker employees, especially those within the Mobile LiDAR Center of Excellence, it is viewed as a primary, positive element of our work. To be perfectly honest, being very busy is viewed as our normal way of life. The influx of new work over the past several years has pushed us to capacity and sometimes we can feel a bit overwhelmed with the demands for our work. However, each and every time we work on a project we have found a way to meet and exceed our client’s expectations. Our ability to meet new challenges head on and rise above it is what sets Michael Baker’s Mobile LiDAR operations apart.

Success is not given for us, it is earned. For all of my team members in the LiDAR Center our success begins through the deployment of one or more of our Mobile LiDAR vehicles. Training new Mobile LiDAR operators is the most important aspect of the LiDAR Center’s daily successes. We have a saying within the LiDAR Center: “Our operators are the ones that actually drive our business.”

Our driver/operators are the tip of the spear for all of our Mobile LiDAR projects. With our increased work load, hiring and training operators has been paramount in recent months. These vehicles carry the LiDAR systems that create vast amounts of data. Effective field operations are the base of our entire operation. Without quality data every second of every day, a ripple effect is made all the way down the project’s product line.

Training begins typically on the new hire’s first day, with a multitude of training manuals, power points, and videos. Safety is our first priority in all our training. As Senior Operator, my job is to ensure our new hires know how to be safe while performing their work and flawlessly conduct every aspect of our collection tasks with our systems. All of this must be learned before they get in a Mobile LiDAR vehicle. It will take weeks to fully break down all of the necessary information presented to them. As we like to say, “It’s more than just pushing a button and driving.” Learning takes time and attention to all details. With daily experience they gain tremendous proficiency.

All aspects of our Lynx SG-1 system are introduced to them, from basic start up and operation, to troubleshooting and diagnosis. They learn how to adjust and calibrate the system, modify existing set ups to accommodate different equipment requirements, calculate scale factor, GNSS Azimuth Measurement Subsystem (GAMS) solution, etc. all in a short period of time. (If you wish to learn more about GAMS read an article written for LiDAR Magazine by our Stephen Clancy that may help you better understand the concepts and techniques for deriving positions from the equipment and software associated with Mobile LiDAR systems.)

Training will continue even after new operators have gleaned all they can out of their training manuals. Being in a Mobile LiDAR truck and performing a collection is an entirely different animal than being in a classroom. Weather, traffic, and unforeseen circumstances (such as other’s accidents/construction) can all play an integral role on a collection’s actual performance. It is the operator’s responsibility to not only determine the collection route within the designated collection area, but plan and assess all other extenuating circumstances that may impact the project’s requirements. The operator must be mindful of state and local laws, Michael Baker’s own safety rules and guidelines and staying within the designated project’s required accuracy and information specifications. Once a new operator has a few successful collections under his or her belt, they are fully integrated with collection planning, extraction and post processing of data including Continuously Operating Reference Station (CORS) data retrieval among other processing demands.

A Mobile LiDAR operator’s training is never fully complete. After two years of field experience I still find myself learning something new to share with others on our team each and every day. With constantly updated software, new, dynamic projects and the evolving LiDAR technology we adapt to such demands to keep abreast with application of this technology. Our work produces exciting new challenges every day. We will continue to meet and exceed our client’s expectations with exemplary collection practices and high quality data. With the proper training, order of operations, superior support staff and our senior leadership our operators will continue to excel both in and out of the trucks.


Jack King is Senior Mobile LiDAR Operator with Michael Baker International's Mobile LiDAR Center of Excellence. He has racked up more miles and projects than any other operator and can error handle with the best attitude and composure imaginable!

Thursday, September 29, 2016

As Seen on TV

The Mobile LiDAR team at Michael Baker International had the distinct pleasure of being showcased on the latest episode of Worldwide Business with kathy ireland®.  The segment, which aired on Sunday, September 25th on Fox Business Network, featured Peter Bonne, CEO of Orbit GT®.  As you’ve seen in previous posts (Picture of the Week and LiDAR Data & Orbit GT), Michael Baker utilizes Orbit’s Content Manager, Asset Inventory and Publisher software applications to exploit LiDAR and panoramic imagery through our own web-portal.

A look inside one of Michael Baker's Mobile LiDAR vehicles.
Michael Baker’s Mobile LiDAR equipment and personnel were represented throughout the broadcast, including interviews with Bob Hanson, Senior Vice President of Geospatial Information Technology and Scott Peterson, Systems Supervisor.  Each discussed the importance of Geospatial data in managing and maintaining our Nation’s infrastructure.

Michael Baker’s Bob Hanson discusses the role of Geospatial data in managing our Nation’s infrastructure.
Our LiDAR operations have employed Orbit GT’s software for the past year.  Publishing spherical imagery and LiDAR data has become a routine deliverable to our clients. By offering the data in an “easy to use” application our clients are empowered to make timely decisions without overwhelming them with “Big Data.” 

A view of the Orbit GT client application and published data as viewed through our web portal.

A low resolution video is provided:


To view this program in HD, go to:


Tuesday, September 20, 2016

By the Numbers: Positioning and Navigation

  • 4:  Number of individual positioning systems equipped on each of our 4 Mobile LiDAR systems: 1 dual antenna GPS/GNSS; 1 military-grade Inertial Measuring Unit (IMU); 1 Distance Measuring Instrument (DMI); and 1 GPS for vehicle navigation.
  • 200:  Frequency at which the vehicle’s position is updated every second (Hz).  The IMU fine-tunes initial positioning generated by the dual-antenna GPS/GNSS by combining readings attitude (pitch, yaw, roll) calculations with distance traveled (DMI) to produce an accurate position at 200 Hz.
  • 1:  Number of IMU’s onboard each Mobile LiDAR system.  One of our four IMU’s is also used by the U.S. Military as part of the guidance system of a Patriot Missile.  That system is regulated by the U.S. State Department through the International Traffic in Arms Regulations (ITAR) – needless to say, there’s a little bit of red tape to clear if we want to take that unit out of the country.
  • 12:  Number of miles of subterranean mine shafts surveyed during a previous project.  The combination of the IMU and DMI allow our systems to perform accurate collections during sustained GPS-outages using dead reckoning.  
  • 1,024:  Number of wheel rotation measurements performed every second.  Our DMIs are directly affixed to the vehicle’s wheel to ensure reliable readings. Due the inherent positional errors with GPS the DMI is not only used to indicate accurate distance traveled, but also to alert the system when the vehicle is stopped - called the "Zero Update".
  • 2:  The fluctuation in tire pressure (lbs.) which will result in inaccurate distance measurements.  During a collection, the DMI scale factor (a function of the tire's circumference) is constantly monitored and "calibrated" using other systems, including GPS.

Wednesday, September 7, 2016

Circling the answer through RANSAC

Here in Michael Baker's Mobile LiDAR Center of Excellence, we are routinely challenged with developing new ways to extract the most from our data. Our focus is to minimize the amount of human interaction required to extract a relevant piece of data from the voluminous point clouds we collect. Understanding our necessary and recurring requirements within automated processes is important to us for the types of products we deliver. Knowing requirements helps us to determine if we are in a “buy versus build” decision for a particular software automation task. Many software companies are developing robust commercial software tools for feature extraction from LiDAR point clouds. However, the rights to modify any commercially developed software and inherent intellectual property and licensing costs can make the “buy” decision onerous and costly for us.

Understanding the likely and underlying algorithms we’d choose to employ in any software we look to build, or buy and license is vital. As engineers, surveyors and subject matter experts with a deep awareness of LiDAR data and its processing we know what we want and need for automation. Knowledge and necessity are not mutually exclusive. They should optimally align to produce the best solutions. That Rolling Stones lyric comes to mind. Yet, we don’t agree with the song’s implied result when it comes to software: “You don’t always get what you want, but you get what you need.”

In the best case, we get what we want and also need as it comes to our requirements for LiDAR processing. Too many needs are fulfilled inefficiently with commercial software. We must avoid “kluge approaches” when fulfilling a specific software or task sequencing approach, so in house development allows us to fulfill these needs specifically and efficiently in our LiDAR processing.

As an example let’s examine how we might fulfill a very repetitive task while using a computer to find the precise center, radius and circumference of a circle within the chaos of thousands of LiDAR points in a point cloud through a combination of geometry and algorithm design.

RANSAC (Random Sample Consensus) is an iterative based outlier detection method. The basic principle of which has been evolved to work with geometric equations allowing the system to determine the best fit circle within the LiDAR point data as well as locating the center of the best fit circle. The system creates “slices” through the points at a specified thickness in the vertical plane then determines the best fit circle and center point for each slice. Once we determine the location of a phenomena that might represent a circular object, we can use an automation tool to facilitate automatic extraction.

The advantages of such a tool include:
  1. Ability to calculate the taper of any circular object ( columns, posts, poles, water tanks, etc.) and project the taper to a point that may be obscured by an object in the LiDAR data
  2. Determining if an object is leaning by analyzing the center points of all the slices along the height of the object
  3. Reducing the human error of manual attempts to extract the circle and center points.
We are continuously striving to expand our LiDAR data extraction capabilities at Michael Baker while appropriately making the correct buy or build choices with any software we utilize. When working with repetitive processes on tens of thousands of single functions of extractions per week, the simplest software process is better and more efficient for us. Geometric shapes are precise forms. They are mathematically consistent. Circles represent just one shape of the most basic and important forms of geometric objects. Squares, spirals, triangles are also basic forms. Extracting basic forms efficiently and cost effectively is very important to us.

We continually focus on getting everything right with one right extraction process at a time. This RANSAC system of processing is one of many developments that we will continue to exploit which sets us apart, ensuring Michael Baker International is the first name in LiDAR.


Sandor Laszlo, PE is a Software Engineering Supervisor with Michael Baker's Mobile LiDAR Center of Excellence.  Sandor's current focus is on the development of semi-automatous systems for extraction of features from LiDAR point cloud information.